Abstract

The qualitative properties of high pressure die castings are closely correlated with their internal structure, which is directly conditioned by the gas entrapment in the melt volume during the casting cycle. It is known that the gas entrapment in the volume of the melt and their subsequent distribution into the cast can be reduced by changing the technological parameters of the casting cycle or by the modification of the gating system design. The contribution addresses the issue of which variant of the gas content reduction is more efficient regarding the gas entrapment and the nature of the melt flow in the runners. The experiments are based on a real casting process. The established design solution of the gating system and the technological parameters setting are considered as a referential. Different gating system modifications were designed where the design modification is connected with the cross-section of a gate, in which the final acceleration of the melt flow occurs. The observed melt velocity in the gate is considered as a correlation factor, based on which the modification in the piston velocity is determined. The assessed parameter is the gas entrapment in the cast volume at the end of the filling phase. Assessment of the casting cycle and evaluation of experiments is performed using simulation program Magmasoft. Based on the performed analyses, it can be stated that the gate design modification will affect the filling regime of the die cavity by changing the melt velocity in gate, but the nature of the melt flow in runners remains unchanged. Modification of the piston velocity affects the filling regime of the die cavity, and also the nature of the melt flow as it passes through the runners, thereby promoting the gas entrapment in the melt volume. Therefore, it is necessary to pay an increased attention to the design of the gating system and only after debugging the design to proceed to the optimization of technological parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.