Abstract

An experiment was designed to investigate the effect of silicon supply (0 and 500μM) on Spartina densiflora plants grown at two copper (Cu) concentrations: 0 and 15mM. Growth parameters together with total concentrations of calcium, Cu, potassium, magnesium, manganese, sodium and nitrogen were determined in roots and leaves. Photosynthetic traits were followed by measurement of leaf gas exchange, efficiency of PSII biochemistry, total content of photosynthetic pigments and concentration and carbamylation of Rubisco sites concentration ([Rubisco]). Respiration and oxygen isotope fractionation were measured in roots to study the in vivo activities of cytochrome oxidase (COX) and alternative oxidase (AOX) pathways, as well as AOX capacity. The results confirm that Si supply improves growth of S. densiflora under Cu stress. Improved growth was associated with higher net photosynthetic rate. Beneficial effect of Si on S. densiflora photosynthetic apparatus was associated with a reduction of the Cu impact on active Rubisco sites, as well as on the photochemical apparatus and chlorophyll concentration. Moreover, ameliorative effects of Si were associated with the avoidance of Cu translocation from roots to leaves. Finally in vivo activities of COX and AOX pathways were strongly inhibited in Cu-treated plants, and this reduction was not mitigated by Si-treatment.Therefore, Si appears to play an important role in Cu-tolerance of S. densiflora, not by avoiding its uptake by roots, but via some mechanism to avoid Cu translocation from roots to leaves, resulting in a general reduction of Cu-induced deleterious effects on the leaf photosynthetic apparatus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.