Abstract

Differential Global Positioning Systems (DGPS) and the European Geostationary Navigation Overlay Service (EGNOS) are included in a group of supporting systems (Ground-Based Augmentation System (GBAS)/Space-Based Augmentation System (SBAS)) for the American GPS. Their main task is to ensure better positioning characteristics (accuracy, reliability, continuity and availability) compared to GPS. Therefore, they are widely applied wherever GPS failures affect human safety, mainly in aviation, land and marine navigation. The aim of this paper is to assess the predictable positioning accuracy of DGPS and EGNOS receivers using a vessel manoeuvring in the Bay of Gdansk. Two receivers were used in the study: a Simrad MXB5 (DGPS) and a Trimble GA530 (EGNOS), which were simultaneously recording their coordinates. The obtained values were compared with the trajectory computed using a geodetic Global Navigation Satellite System (GNSS) receiver (Trimble R10) connected to a GNSS network, ensuring an accuracy of 2–3 cm (p = 0·95). During a four-hour measurement session, the accuracy statistics of these systems were determined based on around 11,500 positionings. Studies have shown that both positioning systems ensure a similar level of accuracy of their positioning services (approximately 0·5–2 m) and they meet the accuracy requirements set in published standards.

Highlights

  • The Global Positioning System (GPS), alongside Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) is one of two fully operational Global Navigation Satellite Systems (GNSS) and is used by millions around the world (European GNSS Agency, 2013; Yoon et al, 2016)

  • Considering its accuracy, GPS plays a fundamental role in vehicle navigation (Specht and Rudnicki, 2016), measurements using GNSS geodetic networks (Specht et al, 2017), marine navigation to ensure safety (Naus and Waz, 2016), air navigation in which GNSS techniques are used at an initial stage of implementation as part of aircraft approach systems (Ciecko et al, 2016) and in general social navigation understood as using satellite positioning in non-professional applications where GNSS receivers are widely applied in tourism or sport (Specht and Szot, 2016)

  • The aim of this study was to assess the accuracy of the Differential GPS (DGPS) and European Geostationary Navigation Overlay Service (EGNOS) systems during the manoeuvring of a vessel in the Bay of Gdansk

Read more

Summary

Introduction

The Global Positioning System (GPS), alongside Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) is one of two fully operational Global Navigation Satellite Systems (GNSS) and is used by millions around the world (European GNSS Agency, 2013; Yoon et al, 2016). Some limitations in the capabilities of GPS such as insufficient or low system accuracy in some applications have resulted in the emergence of Ground-Based Augmentation Systems (GBAS) and Satellite- Based Augmentation Systems (SBAS) for GPS Thanks to these systems, the positioning characteristics of GNSS systems such as accuracy, reliability, continuity, availability and especially integrity are considerably improved. The idea behind its operation lies in determination of the error related to pseudorange observables and calculated comparing the actual value computed by the GNSS receiver and the “true” value calculated using the satellite and the reference station antenna coordinates This difference, referred to as a pseudorange correction, is transmitted within the frequency range of 283·5–325 kHz to users who use a DGPS receiver and take it into account in the positioning process (Specht et al, 2016). Compared to LADGPS, whose pseudorange corrections are scalar in nature, WADGPS allows for an analysis of individual sources of positioning errors and modelling of their changes, which can ensure positioning with an accuracy of approximately 1 m over a relatively large area of, for example, a continent, regardless of the distance between the user and the system reference station (Cosentino et al, 2005; Retscher, 2001)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.