Abstract

The purpose of this study was to evaluate the performance of a model using You Only Look Once (YOLO) for object detection of proximal caries in periapical radiographs of children. A total of 2016 periapical radiographs in primary dentition were selected from the M6 database as a learning material group, of which 1143 were labeled as proximal caries by an experienced dentist using an annotation tool. After converting the annotations into a training dataset, YOLO was trained on the dataset using a single convolutional neural network (CNN) model. Accuracy, recall, specificity, precision, negative predictive value (NPV), F1-score, Precision-Recall curve, and AP (area under curve) were calculated for evaluation of the object detection model’s performance in the 187 test datasets. The results showed that the CNN-based object detection model performed well in detecting proximal caries, with a diagnostic accuracy of 0.95, a recall of 0.94, a specificity of 0.97, a precision of 0.82, a NPV of 0.96, and an F1-score of 0.81. The AP was 0.83. This model could be a valuable tool for dentists in detecting carious lesions in periapical radiographs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.