Abstract

Process-level energy efficiency improvement is regarded as an effective technique for emissions reduction from the petroleum refining industry. Assessing the systems-level impacts of these energy efficiency improvements is crucial for effective long-term climate change policy- and decision-making. In this study, we developed a framework that integrates process simulation with integrated resource planning and techno-economic assessment techniques to evaluate long-term GHG mitigation potential in the refining sector. Detailed process simulations were done for eleven energy efficiency improvement measures in the refining sector. A case study was conducted for Alberta’s (a province in western Canada) refining sector to assess GHG emissions reduction potential and their implications for long-term climate change policy-making. The GHG mitigation scenarios considered time horizons to the years 2030 and 2050. The results show that compared to the reference scenario, integrating the energy efficiency options in the refining sector will result in cumulative emissions reduction of 5%. About 60% of the anticipated emissions reductions are economically attractive. The proposed framework is an effective tool for the evaluation of long-term refining sector GHG mitigation potential and can be used for decision-making and policy formulation at various levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.