Abstract

Abstract Observing system experiments (OSEs) are commonly used to quantify the impact of different observation types on forecasts produced by a specific numerical weather prediction system. Recently, methods based on degree of freedom for signal (DFS) have been implemented to diagnose the impact of observations on the analyses. In this paper, the DFS is used as a diagnostic to estimate the amount of information brought by subsets of observations in the context of OSEs. This study is interested in the evaluation of the North American observing networks applied to OSEs performed at the Meteorological Service of Canada for the period of January and February 2007. The relative values of the main observing networks over North America derived from DFS calculations are compared with those from OSEs in which aircraft or radiosonde data have been removed. The results show that removing some observation types from the assimilation system influences the effective weight of the remaining assimilated observations, which may have an increased impact to compensate for the removal of other observations. The response of the remaining observations when a given set of observations is denied is illustrated comparing DFS calculations with the observations’ impact estimated from OSEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.