Abstract
ABSTRACTMortise-tenon joints for working chair construction fail under bending stresses. Dovetail joints could offer an alternative due to their resistance to bending. However, furniture joint strength depends on the design of the parts and appropriateness of the timber for the construction. Information on timber-joint design combination that would improve joint strength is lacking for most secondary timbers with prospects for joinery-making. This study assessed the bending strengths of two joint designs (dovetail and mortise-tenon) for leg-and-rail construction from Klainedoxa gabonensis (a secondary timber) and Entandrophragma cylindricum (popularly used for furniture). Dovetail joints were stronger than those of mortise-tenon. For both joints, the design with longer, wider and thicker tails and tenons [large-sized (Type LS)] was stronger than its counterpart [small-sized (Type SS)]. Joints manufactured from K. gabonensis were also stronger than those from E. cylindricum. Thus, K. gabonensis could be an appropriate material for joinery/furniture production. This would broaden the raw material base for the furniture sector. However, its working chairs designed with Type LS dovetail joints would resist bending forces better and ensure stronger furniture than mortise-tenon. To offset frequent furniture breakdown, this study provides designers with reliable information regarding joint strength from different timbers to guide selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.