Abstract

Using computer simulations and statistical methods, the resolution of pace mapping when used in combination with body surface potentials was systematically investigated. In an anatomical model of the human ventricular myocardium, pre-excitation sequences were initiated at 69 sites positioned along the atrioventricular (AV) ring and corresponding body surface potential maps (BSPMs) were calculated at 32 leads placed on the anterior torso. For each time after the onset of pre-excitation (every 4 ms to 40 ms) and each root-mean-square (RMS) noise level (5, 10, 20 and 50 microV), BSPMs were cros-correlated and the spatial resolution defined as the largest pacing site separation at which the differences in correlation coefficients were not statistically significant (level p > or = 0.05). The findings indicate that when random RMS noise of 5 microV was added to the simulated BSPMs, average spatial resolution over all 60 sites was at 20 ms after the onset of pre-excitation within 3.5 +/- 0.9 mm. The results provide theoretical evidence that statistical analysis of BSPMs obtained during pace mapping can offer improved means for subcentimetre identification of accessory pathways located along the AV ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.