Abstract

The Clouds and the Earth's Radiant Energy System (CERES) data has been used by several studies to calculate the top of atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) of biomass burning aerosols over land. However, the current CERES angular distribution models that are used to convert measured TOA radiances to fluxes are not characterized by aerosols. Using our newly developed empirical angular models for smoke aerosols we calculate the SWARF over South America for eight years (2000–2008) during the biomass burning season. Our results indicate that when compared to our new angular distribution model-derived values, the instantaneous SWARF is underestimated by the CERES data by nearly 3.3Wm−2. Our studies indicate that it is feasible to develop angular models using empirical methods that can then be used to reduce uncertainties in aerosol radiative forcing calculations. More importantly, empirically-based methods for calculating radiative forcing can serve as a benchmark for modeling studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.