Abstract

This paper presents the reliability levels provided by the load-resistance factors of the AASHTO LRFD Bridge Design Specifications for the Strength Limit State-I and -IV, and an optimization scheme for adjusting the load-resistance factors of the specifications. It is shown that the load-resistance factors of the specifications result in lower reliability indices than the target reliability index and widely varying reliability indices with the load composition for reinforced concrete, steel and pre-stressed concrete members. An optimization scheme is proposed to obtain a new set of the load-resistance factors that yield more uniform reliability levels and better approximation to the target reliability index in a wide range of load compositions. The objective function of the proposed optimization scheme is defined as the L2-norm of the error between the target and calculated reliability indices by load-resistance factors over a given interval of load composition. The results of the optimization show that the dead load factor for structural components should be increased by 0.1 for the Strength Limit State-I, and that the vehicular live load should be included in the Strength Limit State-IV. The use of exact figures up to the second decimal point is recommended for the resistance factors. A unified limit state for gravitational loads is proposed to replace the two limit states with a single limit state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.