Abstract

ObjectiveTo compare muscle endurance in adolescents with spastic cerebral palsy (CP) with typically developing (TD) peers using a submaximal repetitions-to-fatigue (RTF) protocol. DesignCross sectional. SettingHuman motion laboratory. ParticipantsAdolescents with spastic CP (n=16; Gross Motor Function Classification System levels I or II) and TD adolescents (n=18) within the age range of 12 to 19 years old. InterventionsNot applicable. Main Outcome MeasuresEach participant performed 3 RTF tests at different submaximal loads, ranging from 50% to 90% of their maximal voluntary knee extension torque. The relation between the number of repetitions (repetition maximum [RM]) and imposed submaximal relative (percent of maximal voluntary torque [%MVT]) and absolute (Nm/kg) torque was quantified. To compare adolescents with CP with TD adolescents, a mixed linear model was used to construct load endurance curves. Surface electromyography of quadriceps muscles was measured to assess changes in normalized amplitude and median frequency (MF) as physiological indicators of muscle fatigue. ResultsAdolescents with CP showed a larger decrease in %MVT per RM than TD adolescents (P<.05). TD adolescents showed substantial higher absolute (Nm/kg) load endurance curves than adolescents with CP (P<.001), but they did not show a difference in slope. Electromyographic normalized amplitude increased significantly (P<.05) in the quadriceps muscles in all tests for both groups. Electromyographic MF decreased significantly (P<.05) in tests with the low and medium loads. Electromyographic responses did not differ between groups, indicating that similar levels of muscle fatigue were reached. ConclusionsAdolescents with CP show slightly lower muscle endurance compared with TD adolescents on a submaximal RTF protocol, which is in contrast with earlier findings in a maximal voluntary fatigue protocol. Accordingly, adolescents with CP have a reduced capacity to endure activities at similar relative loads compared with TD adolescents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.