Abstract
Over the past few years, surface ozone (O3) pollution has dominated China's air pollution as particulate matter has decreased. In Beijing, the annual average concentrations of ground-level O3 from 2015 to 2020 regularly increased from 57.32 to 62.72μg/m3, showing a change of almost 9.4%, with a 1.6% per year increase. The meteorological factors are the primary influencer of elevated O3 levels; however, their importance and heterogeneity of variables remain rarely understood. In this study, we used 13 meteorological factors and 6 air quality (AQ) parameters to estimate their influencing score using the random forest (RF) algorithm to explain and predict ambient O3. Among the meteorological variables and overall, both land surface temperature and temperature at 2m from the surface emerged as the most influential factors, while NO2 stood out as the highest influencing factor from the AQ parameters. Indeed, it is crucial and imperative to reduce the temperature caused by climate change in order to effectively control ambient O3 levels in Beijing. Overall, meteorological factors alone exhibited a higher coefficient of determination (R2) value of 0.80, compared with AQ variables of 0.58, for the post-lockdown period. In addition, we calculated the number of days O3 concentration levels exceeded the WHO standard and newly proposed peak-season maximum daily 8-h average (MDA8) O3 guideline for Beijing. The exceedance number of days from the WHO standard of MDA8 ambient O3 was observed to be the highest in June, and each studied year crossed peak season guidelines by almost 2 times margin. This study demonstrates the contributions of meteorological variables and AQ parameters in surging ambient O3 and highlights the importance of future research toward devising an optimum strategy to combat growing O3 pollution in urban areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.