Abstract

Massive gas injection was used on Tore Supra to study disruption mitigation. The cooling time between the injection and the thermal quench drops to 2ms for larger gas flow rates (∼5e24atoms/s) limiting the radiated energy to ∼10% of the plasma thermal energy content. A significant reduction of the heat load on the limiter is nevertheless observed in the mitigated cases. The broadening factor of the power decay length in the scrape-off layer during the thermal quench estimated around 10 (+/−5) does not change significantly between mitigated and unmitigated. Reached densities with He injections are sufficient to suppress primary runaway electrons (dominant on Tore Supra) but still far too low to avoid avalanche process (dominant in ITER). The extension of the current quench time, which is observed in mitigated disruptions (typically by 50%), could be an attractive feature to reduce the requirements on the density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.