Abstract

Computer aided cooling curve analysis (CACCA) is an online prediction tool for the determination of solidification characteristics of metals or alloys. The results of CACCA can be used to accurately determine latent heat and solid fraction needed for modeling of the solidification process. Newtonian and Fourier analysis techniques adopt a data base line fitting technique to the first derivative curve for calculation of the solid fraction and latent heat of solidification. This paper describes the theoretical and experimental procedures involved Newtonian and Fourier analysis techniques with reference to an Al-22% Si alloy. The correlations between the solid fraction and temperature/time for the alloy were determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.