Abstract
Calcite/zeolite mixture (CZ) can be used to construct a capping layer for the simultaneous management of phosphorus (P) and nitrogen (N) liberation from sediments into the overlying water (OVER-water). However, its control efficiency of sedimentary P release still needs to be improved. To address this issue, an iron-modified CZ (Fe-CZ) was synthesized, characterized, and employed as a capping material to simultaneously prevent P and N release from sediments into OVER-water. Batch and microcosm incubation experiments were performed to study the efficiency and mechanism for the control of P and N release from sediments by capping Fe-CZ. Results showed that sediment capping with Fe-CZ resulted in the significant reduction of soluble reactive P (SRP) and ammonium-N (NH3-N) in OVER-water, with reduction rates of 77.8-99.7% and 54.0-96.7%, respectively. Furthermore, the Fe-CZ capping layer decreased the SRP concentration in the pore water (PORE-water) at depth of 0-30mm and reduced the concentration of PORE-water NH3-N at depth of 0-50mm. Moreover, the Fe-CZ capping layer gave rise to the great decrement of the concentration of the labile P measured by DGT (diffusive gradient in thin films) technology (P-DGT) in the profile of OVER-water and sediment. Additionally, the Fe-CZ capping resulted in the reduction of redox-sensitive P (P-BD) in the 0-50mm sediment and caused the transformation of P-BD to calcium-bound P (P-HCl) and residual P (P-RES) in the 0-10mm sediment as well as to P-RES in the 10-20mm sediment. Results of this work indicate that the Fe-CZ capping has a high potential for the simultaneous management of P and N release from sediments, and the decrease of the contents of sediment P-DGT, sediment P-BD, PORE-water SRP and PORE-water NH3-N as well as the conversion of mobile P to more stable P in the top sediment should have a significant role in the simultaneous interception of sedimentary P and N liberation into OVER-water by the Fe-CZ capping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.