Abstract

Wastewater treatment plants (WWTPs) play a critical role in the sustainable development of water resources due to its outstanding ability of removing pollutants from complex influent wastewater and generating clean and safe effluent. This paper innovatively adopted the meta-analysis method in view of published LCA studies to assess the energy use and environmental impacts of WWTPs during their life cycle. The search and screening process determined a useful data source with 54 LCA literatures covering 109 relevant case studies. The meta-analysis results revealed that, compared with other regions, the WWTPs in China have the higher intensity in terms of energy use, global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), photochemical oxidation (PHO), freshwater ecotoxicity potential (FETP) and terrestrial ecotoxicity potential (TETP) categories, implying that the energy conservation and emission reduction strategies are necessary to wastewater treatment industry in China. Moreover, compared with A/A/O and CASS processes, the A/O process consumes less energy and results in lower GWP and AP intensity, but affects adversely the natural water-body protection due to undesirable treatment efficiency. Furthermore, the treatment capacities of medium and large scales (i.e. 5-20 × 104 m3/d) are most reasonable sizes for WWTPs since their intensity of energy use, GWP, EP and AP are under a relatively low level. Finally, a strict effluent discharge standard is highly recommended from the perspective of protecting aquatic environment, although it leads to a higher energy consumption. The findings of this study could provide valuable references for promoting healthy and sustainable wastewater treatment industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.