Abstract

Generally, fatigue failure in an element happens at the notch on a surface where the stress level rises because of the stress concentration effect. The present paper investigates the effect of a notch on the fatigue life of the HSLA100 (­high strength low alloy) steel which is widely applicable in the marine industry. Tensile test was conducted on specimens and mechanical properties were obtained. Rotating bending and axial fatigue tests were performed at room temperature on smooth and notched specimens and S-N curves were obtained. Using the obtained S-N curve for smooth specimens, the fatigue strength factor for the notched specimens were predicted by Weibull's weakest-link, ­Peterson, Neuber, stress gradient and critical distance methods and compared with experimental results. It was found that the critical distance and also Weibull’s weakest-link methods have the best agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.