Abstract

The road transportation infrastructure system (RTIS) provides a network of options that support the movement of people and goods. As a critical lifeline system, the resilience assessment of RTISs under the impact of different natural hazards, particularly earthquakes, has attracted extensive attention. When an earthquake occurs, an assessment of the connectivity reliability and travel time on road networks is necessary for emergency planning. In this study, the road network in the Aba Autonomous Prefecture, Sichuan Province, China, was considered as the study area and divided into 13 traffic analysis zones (TAZs) based on the administrative divisions. To consider the uncertainties related to seismic hazard assessment, random fields of ground motions were generated using a Monte Carlo simulation (MCS), considering the spatial correlation. Additionally, a connectivity reliability assessment model and travel time assessment model for the road networks were proposed. The connectivity reliability between the TAZs and increased travel time on the road networks after an earthquake were evaluated using MCS to evaluate the uncertainties related to the damage state assessment of road assets, such as bridges, tunnels, and road segments. Consequently, the results can be used as a theoretical basis for decision-making on the location and number of emergency rescue points after an earthquake and as a functional metric for resilience assessment models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.