Abstract

Recovery from anaesthesia is associated with large changes in cardiovascular autonomic activity, which are poorly documented in children. This study was undertaken to investigate the cardiovascular autonomic activity in anaesthetized and recovering children, using a noninvasive approach based on spectral analysis of heart rate (HR) and blood pressure (BP) variability. Ten children (aged 5-13 years) undergoing major surgery were studied. Continuous HR and BP were recorded using a noninvasive device during deep anaesthesia and recovery. Spectral analysis was used to determine the main oscillatory components of HR and BP signals. For each power spectrum, the frequency components were identified as follows (i): the low frequency (LF) component (0.04-0.14 Hz) both parasympathetically and sympathetically mediated for HR and corresponding to vasomotor sympathetic modulation for BP; and (ii) the high frequency (HF) component (0.2-0.6 Hz) parasympathetically mediated for HR, and reflecting mechanical influence of ventilation on cardiac output for BP. In addition, the LF : HF ratio for HR, reflecting the cardiac sympathovagal balance, was calculated. Under deep anaesthesia, HR variability and BP variability were very low and mainly due to mechanical influence of intermittent positive pressure ventilation. Conversely, the recovery period was associated with a marked increase of HR and BP overall variability. Compared to anaesthesia, spectral analysis of HR and BP revealed that the LF component of BP and HR spectra increased 40-fold during recovery; the LF : HF ratio of HR was also increased during recovery (0.1 +/- 0.1 versus 1.3 +/- 1.2, P=0.008). The results of this study demonstrate that the recovery period is associated with an increase of cardiovascular sympathetic drive in children after major surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.