Abstract
Wind power is a kind of clean energy promising significant social and environmental benefits, and in The Peoples Republic of China, the government supports and encourages the development of wind power as one element in a shift to renewable energy. In recent years however, maritime safety issues have arisen during offshore wind power construction and attendant production processes associated with the rapid promotion and development of offshore wind farms. Therefore, it is necessary to carry out risk assessment for phases in the life cycle of offshore wind farms. This paper reports on a risk assessment model based on a Dynamic Bayesian network that performs offshore wind farms maritime risk assessment. The advantage of this approach is the way in which a Bayesian model expresses uncertainty. Furthermore, such models permit simulations and reenactment of accidents in a virtual environment. There were several goals in this research. Offshore wind power project risk identification and evaluation theories and methods were explored to identify the sources of risk during different phases of the offshore wind farm life cycle. Based on this foundation, a dynamic Bayesian network model with Genie was established, and evaluated, in terms of its effectiveness for analysis of risk during different phases of the offshore wind farm life cycle. Research results show that a dynamic Bayesian network method can perform risk assessments effectively and flexibly, responding to the actual context of offshore wind power construction. Historical data and almost real-time information are combined to analyze the risk of the construction of offshore wind power. Our results inform a discussion of security and risk mitigation measures that when implemented, could improve safety. This work has value as a reference and guide for the safe development of offshore wind power.
Highlights
Offshore wind power risks refer to risks posed by harsh environments at sea, generator set equipment failure, structural failure, management organization and socio-political issues
Maritime safety issues have arisen during offshore wind power construction and attendant production processes associated with the rapid promotion and development of offshore wind farms
This paper reports on a risk assessment model based on a Dynamic Bayesian network that performs offshore wind farms maritime risk assessment
Summary
Offshore wind power risks refer to risks posed by harsh environments at sea, generator set equipment failure, structural failure, management organization and socio-political issues. Especially dynamic Bayesian networks, take account of changes occurring over the life cycle phases of offshore wind farms, based on a large number of training sets and accident reports, and to some extent, reduce of the influence human subjective factors, making assessment results are more reliable and objective. Because it runs on today’s most popular computing platform: Windows operating systems, it makes it very simple and convenient As long as it is within the limits of computer memory, GeNIe allows the creation of models of any size and any complexity [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.