Abstract

Predictions from empirical models are affected by variability in the input parameters for the data set used to build the models. For corrugated boxes, the difference between actual and modeled compression strength creates a real cost associated with box production, often resulting in boxes that may need to be over-designed to compensate for a lack of model precision. No work to date has attempted to assess the limitation in these compression estimates due to input parameter testing variability. In this paper we approach that problem, initially for the McKee equation and then conceptually for other box models. For our industry to do a better job at meeting the needs of our corrugated packaging customers, we need to reduce the variation in the tests we all rely on, particularly for evaluating material strength (edge crush test [ECT]) and package compression performance (box compression test [BCT]).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.