Abstract

One of the key inputs of a hydrologic budget is the potential evapotranspiration (PET), which represents the hypothetical upper limit to evapotranspirative water losses. However, different mathematical formulas proposed for defining PET often produce inconsistent results and challenge hydrological estimation. The objective of this study is to investigate the effects of the Priestley–Taylor (P–T), Hargreaves, and Penman–Monteith methods on daily streamflow simulation using the Soil and Water Assessment Tool (SWAT) for the southeastern United States. PET models are compared in terms of their sensitivity to the SWAT parameters and their ability to simulate daily streamflow over a five-year simulation period. The SWAT model forced by these three PET methods and by gauged climatic dataset showed more deficiency during low and peak flow estimates. Sensitive parameters vary in magnitudes with more skew and bias in saturated soil hydraulic conductivity and shallow aquifer properties. The results indicated that streamflow simulation using the P–T method performed well especially during extreme events’ simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.