Abstract

The scaling subtraction method (SSM) is a non-destructive measurement approach used to extract nonlinear features from the elastic response of a structure. As such it can be used for damage detection purposes by identifying nonlinearities that may result from the presence of micro cracks or inclusions in granular and metallic materials. The effectiveness of such a technique to detect the presence of damage modes typical of laminated composite materials has not been yet assessed. With the purpose of filling this gap, in this paper the SSM is applied to inspect two laminated composite plates with different sizes, impact positions and sensor arrangement. Intact and damaged specimens are tested under harmonic excitations of different amplitude and frequency (the latter selected among the ultrasonic natural frequencies of the two plates). For each excitation case the recorded vibration signals are subtracted from the linearly rescaled reference signals and the SSM nonlinear indicators are calculated. The sensitivity of the method to the presence of damage is assessed in different sensor-receiver scenarios as well as for different excitation frequency and amplitude levels. Finite element numerical investigations are also performed to make comparisons with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.