Abstract

Polysulfone (PSF) backbones were functionalized with reactive chloromethyl groups for preparing thin film anion exchange membranes (AEMs) with fixed benzyl quaternary cations. Three different cation chemistries of varying basicity were evaluated: 1,4-dimethylpiperazinium (DMP+), trimethylammonium (TMA+), and trimethylphosphonium (TMP+). The water uptake, ionic conductivity, and stability in alkaline media of these AEMs were assessed with both chloride and hydroxide counteranions. The results obtained revealed that the basicity value of the free base conjugate of the functionalized quaternary cations correlated well with gains in ionic conductivity. Cation basicity also correlated well with the alkaline stability of cations with the same inorganic atom, but was not an appropriate heuristic for comparing alkaline stability across cations with different inorganic atoms. The alkaline stability studies indicated that the primal degradation pathway of the TMA+ cation differed from that of the TMP+ cation (direct nucleophilic attack versus ylide formation). PSF with TMA+ and DMP+ cations were demonstrated to show alkaline fuel cell performance that reflected their respective ionic conductivity values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.