Abstract
We scrutinise the muffin-tin approximation and the screening within the framework of the Exact Muffin-Tin Orbitals method in the case of cubic and tetragonal crystal symmetries. Systematic total energy calculations are carried out for the Bain path including the body-centred cubic and face-centred cubic structures for a set of simple and transition metals. The present converged results in terms of potential sphere radius (S) and hard sphere radius (b) are in good agreement with previous theoretical calculations. We demonstrate that for all structures considered here, potential sphere radii around and slightly larger than the average Wigner–Seitz radius (w) yield accurate total energy results whereas S values smaller than w give large errors. It is shown that for converged total energies hard spheres with radii b = 0.7–0.8w should be used for an efficient screening within real space clusters consisting typically of 70–90 lattice sites. The less efficient convergence of the total energy in the case of small hard spheres is ascribed to the delocalisation of the screened spherical waves, which leads to inaccurate interstitial overlap matrix. The above conclusions are not significantly affected by the volume of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.