Abstract

Capturing or diverting the disease carrying vector from humans can reduce the transmission of vector borne diseases such as leishmaniasis. The use of animals that act as dead-end hosts to relieve the vector (sandfly) bites on humans is called zooprophylaxis. However, as the number of blood meal providers especially domestic animals increases, the sandflies enhanced availability of blood meals will improve its number and survival, thereby countering the impact of diverting bites from humans. Thus, the transmission model exhibits the structure of a feedback loop characterizing complex dynamic systems. In order to rigorously assess the effect of zooprophylaxis, we propose a system dynamic model for zoonotic cutaneous leishmaniasis transmission with 3 blood-meal hosts: domestic animals, humans, and a reservoir (rodents). In this context, a simulation study of the proposed model with a follow-up period of 1000 days was performed.We explored how perturbations in the parameters characterizing the transmission, essentially the vector biting rates and the size of the domestic animal population, affect the zooprophylaxis outcome. The results show that the basic reproductive number R0 and the disease incidence in humans are decreasing function of the relative size of the domestic animal population. The speed of this decrease depends also on the vector biting rates of the different mammal species.The key factors influencing the magnitude of zooprophylaxis are: the sizes of the vector, rodent, and domestic animal populations, as well as, the biting rates which incorporate relative attraction and accessibility of the vectors to the mammalian populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.