Abstract

The functional and spatiotemporal organization of mitochondrial redox signaling networks can be studied in detail in cardiac myocytes and neurons by assessing the time-resolved signaling traits of their individual mitochondrial components. Perturbations of the mitochondrial network through oxidative stress can lead to coordinated, cluster-bound behavior in the form of synchronized limit-cycle oscillations of mitochondrial inner membrane potentials. These oscillations are facilitated by both structural coupling through changes in the local redox balance and signaling microdomains and functional coupling that is yet poorly understood. Thus, quantifiable measures of both coupling mechanisms, local dynamic mitochondrial coupling constants and functional clustering coefficients, are likely to offer valuable information on mitochondrial network organization. We provide step-by-step methodologies on how to acquire and assess these measures for inner membrane potential fluorescence fluctuations in laser-scanning two-photon microscope recordings of cardiac myocytes and neurons, that can be applied to other tissues as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.