Abstract
AbstractCurrent understanding of global late Quaternary fire history is largely drawn from sedimentary charcoal data. Since publication, CharAnalysis increasingly has been relied upon as a robust method for analyzing these data. However, several underlying assumptions of the algorithm have not been tested. This study uses replicated charcoal count data to examine the assumption of Poisson distribution and reproducibility of peak detection. Results show <10% of the replicate counts are Poisson distributed, a maximum peak replication rate of 60%, and, for >90% of the data, intra-level count differences were larger than the threshold used to identify significance in inter-level differences. A pronounced “edge effect” was observed at the beginning and end of the records, cautioning against validation of results based on sections corresponding to the historical period. The proximal cause for low reproducibility is likely a lack of spatial randomness of charcoal particles at the scale of a core diameter. Until and unless decomposition methods can be developed that accommodate the observed limitations inherent in particle count data, best practices for interpreting charcoal records may be to rely on qualitative interpretations based on smoothed influx values and minimum particle count values in the hundreds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.