Abstract

Past variation in soil pH and air temperature can potentially be reconstructed from the relative abundance in sediments of branched glycerol dialkyl glycerol tetraethers (GDGTs), synthesized by anaerobic bacteria. Specifically, the cyclization of branched tetraethers (CBT) is believed to be a function of pH, whereas temperature can be estimated from a combination of the extent of both the CBT and methylation of branched tetraethers. Here we explore this potential by comparing a recent sedimentary GDGT profile from Lochnagar, Scotland, with reconstructed air temperature (statistically extrapolated from regional instrumental data sets) and diatom‐inferred lake water pH for the past ∼200 years. Branched glycerol dialkyl glycerol tetratether and diatom‐inferred pH generally agree throughout the core, supporting the use of cyclization of branched tetraethers to reconstruct pH. During the period of rapid industrial acidification (∼1860–1970 A.D.), changes in diatom‐inferred pH lag behind those inferred using branched tetraethers by between 10 and 50 years, possibly due to differing nonlinear responses to acid deposition within soil and lake water environments. However, branched‐GDGT‐derived temperatures are both lower than extrapolated mean annual air temperature estimates (by ∼5°C) and exhibit at least double the rate of reconstructed warming (∼2.5°C in 200 years). At Lochnagar, methylation and cyclization of branched tetraethers are closely correlated (r2 = 0.96) suggesting that in this setting the underlying controls over the two indices may not significantly differ. Therefore the validity of branched‐GDGT‐derived temperature is uncertain and further research is required to address the environmental controls over branched glycerol dialkyl glycerol tetratether synthesis and thus their value as palaeoclimate proxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.