Abstract

The acquisition of reliable and accurate data to assess environmental changes over large spatial scales is one of the main limitations to determine the impact of eutrophication, and the effectiveness of management strategies in coastal systems. Here, we used a continuous in situ Chl-a fluorometry sensor and L8/OLI satellite data to develop an algorithm and map Chl-a spatial distribution to assess the impact of freshwater diversions and associated high nutrient loading rates in the Barataria Basin (BB) complex, a coastal system in the northern Gulf of Mexico. We collected water quality samples at 24 sampling stations and high-frequency continuous fluorometry in situ [Chl-a] data along a ~87 km transect from 2019–2020. Field [Chl-a] values were highly correlated (r = 0.86; p < 0.0001) with continuous in situ [Chl-a] fluorometry values. These continuous in situ [Chl-a] values were significantly related to a surface reflectance ratio ([B1 + B4]/B3) estimated using L8/OLI data (exponential model; R2 = 0.46; RMSE = 4.8, p < 0.0001). The statistical model replicated [Chl-a] spatial patterns across the BB complex. This work shows the utility of high-frequency continuous Chl-a fluorometry sampling coupled with L8/OLI image analysis to increase the frequency and number of field data sets to assess water quality conditions at large spatial scales in highly dynamic deltaic regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.