Abstract

Soil algal bioassays have been limited by their inability to evaluate several toxic endpoints because it is difficult to collect pure soil algae growing on and beneath the soil surface. This study describes the extension of a previously developed paper-disc method for analyzing soil toxicity to algae. The method can be used in conjunction with flow cytometric analysis and facilitates the assessment of previously proposed toxicity endpoints, such as the growth zone, biomass, and photosynthetic activity. We assessed the applicability of this paper-disc soil method using the green algae Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata exposed to nickel-contaminated soil; examined cell sizes, cell granularity, enzyme activity, and oxidative stress as new toxicity endpoints using flow cytometry; and identified morphological changes in green algae assayed. The results showed that, used in conjunction with flow cytometry, the extended paper-disc soil method is sufficiently sensitive to detect decreases in cell granularity in C.reinhardtii and esterase activity in P.subcapitata. The method also revealed decreases in growth zone, biomass, and electron transfer from the reaction center to the quinone pool. Collectively, the results of this study indicate that soil algal bioassays using nonspecific algae can be used to assess soil quality, to derive several toxicity endpoints for individual cells, and to evaluate previously established flow cytometric toxicity endpoints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.