Abstract

Leibler pioneered the idea that long enough matrix polymers of length P will spontaneously dewet a chemically identical polymer layer, comprising chains of length N, densely end-grafted to a flat surface ("brush"). This entropically driven idea is routinely used to explain experiments in which 10-20 nm diameter nanoparticles (NPs) densely grafted with polymer chains are found to phase separate from chemically identical melts for P/N ≳4. At lower grafting densities, these effects are also thought to underpin the self-assembly of grafted NPs into a variety of structures. To explore the validity of this picture, we conducted large-scale molecular dynamics simulations of grafted NPs in a chemically identical polymer melt. For the NPs we consider, in the ≈5 nm diameter range, we find no phase separation even for P/N = 10 in the absence of attractions. Instead, we find behavior that more closely parallels experiments when all of the chain monomers are equally attractive to each other but repel the NPs. Our results thus imply that experimental situations investigated to date are dominated by the surfactancy of the NPs, which is driven by the chemical mismatch between the inorganic core and the organic ligands (the graft and free chains are chemically identical). Entropic effects, that is, the translational entropy of the NPs and the matrix, the entropy of mixing of the grafts and the matrix, and the conformational entropy of the chains appear to thus have a second-order effect even in the context of these model systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.