Abstract

We have studied the oligomerization of the membrane glycoproteins of Punta Toro virus (PTV), a member of the Phlebovirus genus of the family Bunyaviridae, and the effect of glycosylation on protein stability and transport. By using sucrose gradient centrifugation, the G1 and G2 glycoproteins in PTV-infected or recombint-transfected cells were found to sediment as dimers after DSP cross-linking, suggesting that the G1 and G2 proteins are associated as dimers by non-covalent interactions. Pulse-chase and two-dimensional gel analysis indicate that dimerization occurs between newly synthesized G1 and G2 proteins, and that a small fraction of the G2 proteins is assembled into G2 homodimers. The amounts of G1 and G2 proteins were substantially decreased, while the amounts of nucleocapsid protein remained nearly unchanged, when PTV-infected cells were treated with the glycosylation inhibitor tunicamycin, indicating that the G1 and G2 proteins are unstable if glycosylation is prevented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.