Abstract

The three novel heterotrimetallic complexes [Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2(NCS)2 (1), [Ni(H2L)2][CuCo(L)2(H2L)(NCS)]2Br2.2H2O (2), and [CuCoCd(H2L)2(L)2(NCS)Br2].CH3OH (3) have been prepared using zerovalent copper; cobalt thiocyanate; nickel thiocyanate (1), nickel bromide (2), or cadmium bromide (3); and methanol solutions of diethanolamine in air. The most prominent feature of the structures of 1 and 2 is the formation of the "pentanuclear"aggregate [[Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2]2+ made up of two neutral [CoCu(L)2(H2L)(NCS)] units and the previously unknown cation [Ni(H2L)2]2+ "glued together" by strong complementary hydrogen bonds. With Cd2+ instead of Ni2+, a different structure is obtained: the [CoCu(L)2(H2L)(NCS)] unit is now linked to the Cd center through coordination of the oxygens of L groups on the Co atom to form the discrete heterotrimetallic molecular species 3. Cryomagnetic measurements of the compounds show that, in all cases, the magnetic behavior is paramagnetic; the polycrystalline EPR spectra contain signals due to monomeric copper species only. At the same time, the EPR spectra of frozen DMF and methanol solutions of 1-3 reveal the presence of triplet-state species that can be generated only by a coupling of the Cu2+ centers within a dimer. The species responsible for the appearance of transitions within the triplet state are thought to be Cu(II) dimeric centers formed by aggregation of two [CuCo(H2L)(L)2] fragments of 1-3 present in solution. The residual monomeric spectra in the g approximately 2 region are indicative of the existence of an equilibrium in solution between the dimeric and monomeric Cu(II) centers in aggregated and free [CuCo(H2L)(L)2] fragments, respectively, with varying degrees of stability. The fragmentation process of 1-3 in solution was screened by electrospray ionization mass spectrometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.