Abstract

ω-Amidase (ω-amidodicarboxylate amidohydrolase, EC 3.5.1.3) isolated from rat liver cytosol is a versatile enzyme that catalyzes a large number of amidase, transamidase, and ester hydrolysis reactions. ω-Amidase activity toward α-ketoglutaramate and α-ketosuccinamate (the α-keto acid analogues of glutamine and asparagine, respectively) is present in mammalian tissues, tumors, plants, bacteria, and fungi. Despite its versatility, widespread occurrence, and high specific activity, the enzyme has been little studied, possibly because the assay procedure previously required a substrate (α-ketoglutaramate) that is not commercially available. Here we report a simplified method for preparing α-ketoglutaramate and an assay procedure that measures α-ketoglutarate formation from α-ketoglutaramate in a 96-well plate format. We also describe a 96-well plate assay procedure that measures ω-amidase-catalyzed hydroxaminolysis of commercially available succinamic acid. The product, succinyl hydroxamate, yields a stable brown color in the presence of acidic ferric chloride that can be quantitated spectrophotometrically with negligible background interference. The two assay procedures (hydrolysis of α-ketoglutaramate and hydroxaminolysis of succinamate) were employed in purifying ω-amidase approximately 3600-fold from rat liver cytosol. The ratio of α-ketoglutaramate hydrolysis to succinamate hydroxaminolysis remained constant during the purification. ω-Amidase has recently been shown to be identical to Nit2, a putative tumor suppressor protein. It is anticipated that these new assay procedures will help to characterize the function of ω-amidase/Nit2 in tumor suppression, will provide the basis of high-throughput procedures to search for potent inhibitors and enhancers of ω-amidase, and will assist in identifying biological interactions between nitrogen metabolism and tumor biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.