Abstract

Wind-tidal flats are the dominant coastal wetland type in southern Texas, USA. Succulent vascular plants are colonizing the flats in some locations, often where past dredge disposal along navigation channels and other activities have interrupted natural water communication between hypersaline bays and large areas of wind-tidal flats. The objective of this study was to test the feasibility of proposed removal of a causeway at Laguna Atascosa National Wildlife Refuge to restore the historic hydrologic regime and eradicate encroaching vascular plants, mostly Salicornia bigelovii, on the assumption that high sediment salt excluded these vascular plants under natural conditions. Assessment in spring 1998 of the density of Salicornia in relation to elevation and sediment salt of bare and vegetated zones on the vegetated flats on one side of the causeway and entirely barren flats with unimpaired connection to Laguna Madre on the other side of the causeway suggested that sediment salt > 0.1 g ml−1 excluded vascular plants. However, bimonthly sampling in 1999–2000 revealed that sediment salt concentrations were > 0.1 g ml−1 throughout the vegetated zone in July and more locally in the period of winter low water, with little impairment to established plants. This indicates that if control is desired, it must be exerted at germination and early establishment during and after fall high water. Continuous monitoring of water levels on either side of the causeway suggests that, even with removal of the causeway, flooding with hypersaline lagoon water will be too infrequent to counteract the freshening effect of a permanent hydraulic connection to the main agricultural drain of the lower Rio Grande Valley that has developed at the other end of the salt flat. Monitoring Salicornia distribution over six years documented huge variation between years but no trend toward increasing dominance of the flats. The results of this study illustrate that the most obvious alterations to a site may not be the most influential on function and that the scale of analysis may have to extend far beyond the site in space and time to evaluate a proposed restoration properly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.