Abstract
In this work, we study two operators that arise in electromagnetic scattering in chiral media. We first consider electromagnetic scattering by a chiral dielectric with a perfectly conducting core. We define a chiral Calderon‐type surface operator in order to solve the direct electromagnetic scattering problem. For this operator, we state coercivity and prove compactness properties. In order to prove existence and uniqueness of the problem, we define some other operators that are also related to the chiral Calderon‐type operator, and we state some of their properties that they and their linear combinations satisfy. Then we sketch how to use these operators in order to prove the existence of the solution of the direct scattering problem. Furthermore, we focus on the electromagnetic scattering problem by a perfect conductor in a chiral environment. For this problem, we study the chiral far‐field operator that is defined on a unit sphere and contains the far‐field data, and we state and prove some of its properties that are preliminaries properties for solving the inverse scattering problem. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.