Abstract

Presented herein are the details of and results from an experimental study conducted to assess the feasibility and effectiveness of a proposed roof isolation system whose purpose is to reduce earthquake damage in buildings. The proposed isolation system entails the detachment of a building's roof from the rest of the building through the insertion of sliding bearings and the attachment of oval-shaped steel elements between the building's roof and the structure below. The objective is to form a simple resonant oscillator with a building's roof and these oval elements, with the roof providing the mass of the oscillator and the oval elements its spring and damper. An additional intention is to make the steel oval elements undergo a large number of inelastic deformation cycles and dissipate, as a result, a large portion of the energy transmitted to a building during an earthquake. The study involves the testing of a small steel frame on a shaking table alternatively with and without the proposed roof isolation system and a comparison of the story drifts and floor accelerations attained in each case. In the conducted tests, the suggested isolation technique effectively reduces the seismic response of the frame. It is concluded, thus, that the proposed roof isolation system has the potential for the development of an inexpensive and effective way to reduce earthquake damage in some buildings and merits further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.