Abstract

In order to remove and stabilize As(III) simultaneously from wastewater, a novel and effective method based on the in-situ formation of As(III)-containing Zn-Fe layered double hydroxides (ZnFe-As-LDHs) was developed. The influence of pH, Zn/Fe, Fe/As and adding rate on the formation of ZnFe-As-LDHs were investigated. Under the optimal conditions, the concentration of As(III) decreased from 100 to 0.13 mg/L and As leaching concentration of the ultimate sludge was 1.87 mg/L, which could meet the arsenic leaching criteria (5 mg/L) regulated by US EPA. Compared with the "ex-situ" sludge obtained by As(III) adsorbed on the pre-formed ZnFe-LDHs, the As(III) removal efficiency increased by 21.6 % and the stability of the sludge increased by 94.2 % on the in-situ formation of LDHs, which mainly attributed to 55.06 % oxidation of As(III) and co-precipitation of As with Zn and Fe. Additionally, a possible in-situ formation pathway for ZnFe-As-LDHs was illustrated. At the beginning of the process, non-crystalline ferric arsenate formed and then transformed to amorphous ferrihydrite as precursors, followed by the formation of LDHs. This work demonstrated that co-precipitating As with Zn and Fe in the wastewater to in-situ form LDHs exhibited excellent potential for removal and direct stabilization of As(III).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.