Abstract

Algebraic codes that achieve list decoding capacity were recently constructed by a careful of the Reed-Solomon code. The low-degree nature of this folding operation was crucial to the list decoding algorithm. We show how such folding schemes arise out of the Artin-Frobenius automorphism at primes in Galois extensions. Using this approach, we construct new folded algebraic-geometric codes for list decoding based on cyclotomic function fields with a cyclic Galois group. Such function fields are obtained by adjoining torsion points of the Carlitz action of an irreducible M ∈ Fq[T]. The Reed-Solomon case corresponds to the simplest such extension (corresponding to the case M=T). In the general case, we need to descend to the fixed field of a suitable Galois subgroup in order to ensure the existence of many degree one places that can be used for encoding.Our methods shed new light on algebraic codes and their list decoding, and lead to new codes achieving list decoding capacity. Quantitatively, these codes provide list decoding (and list recovery/soft decoding) guarantees similar to folded Reed-Solomon codes but with an alphabet size that is only polylogarithmic in the block length. In comparison, for folded RS codes, the alphabet size is a large polynomial in the block length. This has applications to fully explicit (with no brute-force search) binary concatenated codes for list decoding up to the Zyablov radius.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.