Abstract
This article points out some very serious misconceptions about the brain in connectionism and artificial neural networks. Some of the connectionist ideas have been shown to have logical flaws, while others are inconsistent with some commonly observed human learning processes and behavior. For example, the connectionist ideas have absolutely no provision for learning from stored information, something that humans do all the time. The article also argues that there is definitely a need for some new ideas about the internal mechanisms of the brain. It points out that a very convincing argument can be made for a "control theoretic" approach to understanding the brain. A "control theoretic" approach is actually used in all connectionist and neural network algorithms and it can also be justified from recent neurobiological evidence. A control theoretic approach proposes that there are subsystems within the brain that control other subsystems. Hence a similar approach can be taken in constructing learning algorithms and other intelligent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.