Abstract

To predict post-thyroidectomy complications in papillary thyroid microcarcinoma (PTMC) patients using a deep learning model based on preoperative ultrasonographic features. This study addresses the global rise in PTMC incidence and the challenges in treatment decision-making with high-resolution ultrasonography. This study enrolled 1638 patients with clinically staged cN0 PTMC who received surgical treatment from 1997 to 2019 at Beijing Friendship Hospital. Deep learning model was developed using fully connected neural network. Feature selection included 1000 iterations of Bootstrap sampling and Recursive Feature Elimination (RFE) to identify the top 10 features. Data preprocessing involved normalization and imputation for missing values. SMOTE addressed class imbalance. The model was trained and tested on random data split, with performance metrics including Accuracy (ACC), Area Under the Curve (AUC), Sensitivity (SEN), and Specificity (SPE), visualized through a ROC curve and confusion matrix. The fully connected deep neural network model demonstrated high accuracy (ACC 0.81), Area Under the Curve (AUC 0.74), sensitivity (SEN 0.65), and specificity (SPE 0.83) and visualized by ROC curve and confusion matrix. These results highlight the model's reliability and potential as an effective tool in predicting postoperative complications and assisting in clinical decision-making for PTMC patients. This study highlights the potential of deep learning in enhancing medical predictions and personalized healthcare. Despite promising results, limitations include a single-center data source and unconsidered factors like lifestyle and genetics. Future research should expand data sources, include more influencing factors, and refine algorithms to improve accuracy and applicability in thyroid cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.