Abstract

Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies. In this paper, we propose a pedestrian movement model based on artificial neural network. In the model, the pedestrian velocity vectors are predicted with two sub models, Semicircular Forward Space Based submodel (SFSB-submodel) and Rectangular Forward Space Based submodel (RFSB-submodel), respectively. Both unidirectional and bidirectional pedestrian flow at straight corridors are investigated by comparing the simulation and the corresponding experimental results. It is shown that the pedestrian trajectories and the fundamental diagrams from the model are all consistent with that from experiments. And the typical lane-formation phenomena are observed in bidirectional flow simulation. In addition, to quantitatively evaluate the precision of the prediction, the mean destination error (MDE) and mean trajectory error (MTE) are defined and calculated to be approximately 0.2 m and 0.12 m in unidirectional flow scenario. In bidirectional flow, relative distance error (RDE) is about 0.15 m. The findings indicate that the proposed model is reasonable and capable of simulating the unidirectional and bidirectional pedestrian flow illustrated in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.