Abstract
The insect pests are real threat to farmers as they affect the crop yield to a great extent. The use of chemical pesticides for insect pest control has always been a matter of concern as they pollute the environment and are also harmful for human health. Bt (Bacillus thuringensis) technology helped the farmers to get rid of the insect pests, but experienced a major drawback due to the evolution of insects gaining resistance towards these toxins. Hence, alternative strategies are high on demand to control insect pests. RNA-based gene silencing is emerging as a potential tool to tackle with this problem. In this study, we have shown the use of artificial microRNA (amiRNA) to specifically target the ecdysone receptor (EcR) gene of Helicoverpa armigera (cotton bollworm), which attacks several important crops like cotton, tomato chickpea, pigeon pea, etc and causes huge yield losses. Insect let-7a precursor miRNA (pre-miRNA) backbone was used to replace the native miRNA with that of amiRNA. The precursor backbone carrying the 21 nucleotide amiRNA sequence targeting HaEcR was cloned in bacterial L4440 vector for in vitro insect feeding experiments. Larvae fed with Escherichia coli expressing amiRNA-HaEcR showed a reduction in the expression of target gene as well as genes involved in the ecdysone signaling pathway downstream to EcR and exhibited mortality and developmental defects. Stem-loop RT-PCR revealed the presence of amiRNA in the insect larvae after feeding bacteria expressing amiRNA-HaEcR, which was otherwise absent in controls. We also found a significant drop in the reproduction potential (oogenesis) of moths which emerged from treated larvae as compared to control. These results demonstrate the successful use of an insect pre-miRNA backbone to express amiRNA for gene silencing studies in insects. The method is cost effective and can be exploited as an efficient and alternative tool for insect pest management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.