Abstract
The actual European energy context highlights the building sector as one of the largest sectors of energy consumption. Consequently, the “Energy Performance of Buildings Directive”, adopted in 2002 and focusing on energy use in buildings, requires all the EU members to enhance their building regulations and to introduce energy certification schemes, with the aim of both reducing energy consumption and improving energy efficiency. That is why carrying out an energy performance diagnosis is mandatory, notably when buying or selling properties. Indeed, invisible defaults, like, for example, non-emerging cracks or delaminations, could have a detrimental effect on insulating qualities. Esimaing in situ thermo-physical properties allowing locating these defaults, the present work focuses on proposing new and efficient approaches based on the use of both artificial intelligence tools (artificial neural networks and neuro-fuzzy systems) and inverse methods for characterizing building materials i.e. for estimating their thermal diffusivity using thermograms obtained thanks to a non-destructive photothermal method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.