Abstract
White-light endoscopy with biopsy is the current gold standard modality for detecting and diagnosing upper gastrointestinal (GI) pathology. However, missed lesions remain a challenge. To overcome interobserver variability and learning curve issues, artificial intelligence (AI) has recently been introduced to assist endoscopists in the detection and diagnosis of upper GI neoplasia. In contrast to AI in colonoscopy, current AI studies for upper GI endoscopy are smaller pilot studies. Researchers currently lack large volume, well-annotated, high-quality datasets in gastric cancer, dysplasia in Barrett's esophagus and early esophageal squamous cell cancer. This review will look at the latest studies of AI in upper GI endoscopy, discuss some of the challenges facing researchers, and predict what the future may hold in this rapidly changing field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.