Abstract

In recent years, there has been a dramatic rise in interest in retrosynthesis prediction with artificial intelligence (AI) techniques. Unlike conventional retrosynthesis prediction performed by chemists and by rule-based expert systems, AI-driven retrosynthesis prediction automatically learns chemistry knowledge from off-the-shelf experimental datasets to predict reactions and retrosynthesis routes. This provides an opportunity to address many conventional challenges, including heavy reliance on extensive expertise, the sub-optimality of routes, and prohibitive computational cost. This review describes the current landscape of AI-driven retrosynthesis prediction. We first discuss formal definitions of the retrosynthesis problem and review the outstanding research challenges therein. We then review the related AI techniques and recent progress that enable retrosynthesis prediction. Moreover, we propose a novel landscape that provides a comprehensive categorization of different retrosynthesis prediction components and survey how AI reshapes each component. We conclude by discussing promising areas for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.