Abstract

Outcome modeling plays an important role in personalizing radiotherapy and finds applications in specialized areas such as adaptive radiotherapy. Conventional outcome models that are based on a simplified understanding of radiobiological effects or empirical fitting often only consider dosimetric information. However, it is recognized that response to radiotherapy is multi-factorial and involves a complex interaction of radiation therapy, patient and treatment factors, and the tumor microenvironment. Recently, large pools of patient-specific biological and imaging data have become available with the development of advanced biotechnology and multi-modality imaging techniques. Given this complexity, artificial intelligence (AI) and machine learning (ML) are valuable to make sense of such a plethora of heterogeneous data and to aid clinicians in their decision-making process. The role of AI/ML has been demonstrated in many retrospective studies and more recently prospective evidence has been emerging as well to support AI/ML for personalized and precision radiotherapy.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE