Abstract

Due to the difficult evaluation of the risk of anastomotic leakage (AL) after rectal cancer resection, the decision to perform a temporary ileostomy is not easily distinguishable. The aim of the present study was to develop an artificial intelligence (AI) model for identifying the risk of AL to assist surgeons in the selective implementation of a temporary ileostomy. The data from 2240 patients with rectal cancer who received anterior resection were collected, and these patients were divided into one training and two test cohorts. Five AI algorithms, such as support vector machine (SVM), logistic regression (LR), Naive Bayes (NB), stochastic gradient descent (SGD) and random forest (RF) were employed to develop predictive models using clinical variables and were assessed using the two test cohorts. The SVM model indicated good discernment of AL, and might have increased the implementation of temporary ileostomy in patients with AL in the training cohort (p<0.001). Following the assessment of the two test cohorts, the SVM model could identify AL in a favorable manner, which performed with positive predictive values of 0.150 (0.091-0.234) and 0.151 (0.091-0.237), and negative predictive values of 0.977 (0.958-0.988) and 0.986 (0.969-0.994), respectively. It is important to note that the implementation of temporary ileostomy in patients without AL would have been significantly reduced (p<0.001) and which would have been significantly increased in patients with AL (p<0.05). The model (https://alrisk.21cloudbox.com/) indicated good discernment of AL, which may be used to assist the surgeon's decision-making of performing temporary ileostomy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.