Abstract
This study investigates digital transformation and the usability of emerging technologies in policymaking. Prior studies categorised digital transformation into three distinct phases of digitisation, digitalisation, and digital transformation. They mainly focus on the operational or functional levels, however, this study considers digital transformation at the strategic level. Previous studies confirmed that using new emerging AI-based technologies will enable organisations to use digital transformation to achieve higher efficiency. A novel methodological AI-based approach for policymaking was constructed into three phases through the lens of organisational learning theory. The proposed framework was validated using a case study in the transportation industry of a small municipality. In the selected case study, a confirmatory model was developed and tested utilising the Structural Equation Modelling with data collected from a survey of 494 local stakeholders. Artificial Neural Network was utilised to predict and then to identify the most appropriate policy according to cost, feasibility, and impact criteria amongst six policies extracted from the literature. The results from this research confirm that utilisation of the AI-based strategic decision-making through the proposed generative AI platform at strategic level outperforms human decision-making in terms of applicability, efficiency, and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.